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1. Introduction

In this note we consider a configuration arising from a problem of the arbelos
in Wasan geometry. A similar configuration can be found in [1]. Let us consider
an arbelos formed by the three semicircles α, β and γ with diameters BC, CA
and AB, respectively for a point C on the segment AB (see Figure 1). The radii
of α, β and γ are denoted by a, b and c, respectively. Let ε1, ε2, · · · , εn be
congruent circles of radius r < a touching the radical axis of α and β from the
side opposite to A such that ε1 touches α externally, εk (k = 2, 3, · · · , n) touches
εk−1 at the farthest point on εk−1 from AB, and εn touches γ internally. We
denote the arbelos with the circles ε1, ε2, · · · , εn by S(n). Shinohara (篠原善成)
considered the following problem in 1812 [2] (see Figure 2).
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Figure 2: S(n) (n=2)

Problem 1. Find c in terms of a and r for the configuration S(2).
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2. Solution of the problem

Shinohara gave the following solution of Problem 12.

(1) c =
a2 + 2r

√
ar + r2

a− r
.

He also gave the values of a, c and r such that (a, c, r) = (4, 7, 1) satisfying (1). Let
F be the foot of perpendicular from the center of ε1 to AB. The next proposition
gives a solution of Problem 1, since c = a+ b.
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Proposition 1. The following relation holds for S(n).

(2) b =
r (

√
a+ (n− 1)

√
r)

2

a− r
.

Proof. The distance between the center of ε1 and F equals 2
√
ar by the right tri-

angle made by the centers of α and ε1 and the point F (see Figure 3). The distance

from the center of εn to F equals
√

(a+ b− r)2 − (r − (a− b))2 = 2
√

(a− r)b
by the right triangle made by the centers of γ and εn and F . Therefore we get
2
√
ar+2(n− 1)r = 2

√
(a− r)b. Solving the last equation for b, we have (2). □

Let E be the farthest point on εn from F for S(n) (see Figure 4). We have

(3) |EF | = 2
√
ar + (2n− 1)r.

Hence |EF | = 4 + 3 = 7 = c if (a, c, r) = (4, 7, 1) for S(2). Therefore F coincides
with the center of γ in the case given by Shinohara (see Figure 5).
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Figure 5: T (2), (a, c, r) = (4, 7, 1).

2There are writing errors in the text describing c in terms of a and r in [2].
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3. A configuration arising from the problem

Let h be the perpendicular to AB at the center of γ. Let σ be the reflection
in the line h. If the semicircle ασ touches ε1 externally for S(n), then the con-
figuration is denoted by T (n). Hence S(2) in the Shinohara’s case is T (2). We
will show that the configuration T (n) has interesting properties, which deserves
attention. We use the next proposition.

Proposition 2. The following relation holds for T (n).

(4) a =
1

2

(
2n+ 1 +

√
4n+ 1

)
r.

Proof. Since the radius of γ equals |EF | and 2a− r, we have 2
√
ar+ (2n− 1)r =

2a− r by (3). Solving the equation for a, we get

a =
1

2

(
2n+ 1±

√
4n+ 1

)
r.

However a =
(
2n+ 1−

√
4n+ 1

)
r/2 implies c = 2a− r =

(
2n−

√
4n+ 1

)
r < 0,

a contradiction. Therefore we get (4). □

4. Integer case

In this section we consider the case in which the ratio a/r is an integer for
T (n). The semicircle of diameter CCσ erected on the same side of AB as ε1 is
denoted by ζ0 (see Figure 6).
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Figure 6: T (k(k + 1)) (k = 1).

Theorem 1. The following statements hold for the configuration T (n).
(i) The ratio a/r is an integer if and only if n = k(k+1) for a positive integer k.
(ii) In the event of (i), we have a/r = (k+1)2, and there are congruent circles ζ1,
ζ2, · · · , ζk of radius r such that ζi (i = 1, 2, 3, · · · , k) touches ζi−1 at the farthest
point on ζi−1 from AB and ζk touches ε1 at the closest point on ε1 to AB.

Proof. If a/r is an integer, 4n+ 1 is a square of an odd integer by (4). Therefore
there is a positive integer k such that 4n+1 = (2k+1)2. The last equation implies
n = k(k + 1). Conversely n = k(k + 1) implies a/r = (k + 1)2, which is also an
integer. This proves (i). Since the radius of γ equals 2a− r, the distance between
the farthest point on the semicircle ζ0 from AB and the closest point on ε1 to AB
equals

(2a− r)− (2nr + r) = (2(k + 1)2r − r)− (2k(k + 1)r + r) = 2kr.

This proves (ii). □
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Let t be the external common tangent of α and ασ. We consider the case in
which the internal common tangent of the circles εm and εm+1, which is parallel
to AB, coincides with t for some integer m for T (n). This is equivalent to that
εm touches t from the same side as the point C (see Figure 7).

Theorem 2. For the configuration T (n), εm touches t from the same side as C
for a positive integer m if and only if n = 2p(2p + 1) and m = 2p2 for a positive
integer p.

Proof. Since γ has radius 2a− r, the circle εm touches t from the same side as C
if and only if 2a− r − 2(n−m)r = a. By (4), this is equivalent to

(5) m =
1

4

(
2n+ 1−

√
4n+ 1

)
.

We now assume that εm touches t from the same side as C. Then 4n + 1 is a
square of an odd integer by (5). Hence there is a positive integer k such that
n = k(k + 1) as just shown in the proof of Theorem 1. Then m = k2/2. Hence k
must be an even number, i.e., k = 2p for a positive integer p. Therefore we have
n = 2p(2p+ 1) and m = 2p2. Conversely if n = 2p(2p+ 1) and m = 2p2, then (5)
holds. □

ζ2p

BA

ασ α

γ

ε1

ε2p(2p+1)

εm

εm+1
t

C Cσ
ζ0

ζ1

Figure 7: T (2p(2p+ 1)), m = 2p2 (p = 1).

Figure 7 shows the case p = 1. The line t divides the set of the circles
{ε1, ε2, · · · , εn} into the two sets {ε1, ε2, · · · , ε2p2} and {ε2p2+1, ε2p2+2, · · · , εn} in
the event of Theorem 2. Since the number of the circles in the latter set equals
n− 2p2 = 2p(p+ 1), the ratio of the numbers of the circles in the two sets equals
p : p+ 1.
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