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1. Introduction

In this paper, we will prove some relationships among six radii of certain six-circle
configurations, such as given in Figure 1, and give possible generalizations and
discuss some related problems.

Figure 1.

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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152 Relationships Between Radii in a Six-Circle Configuration

Theorem 1.1. Through point P , inside circle O(R) three chords are drawn at
60◦ to each other and they cut the circle O(R) successively in six points-Ai (i =
1, 2, . . . , 6). If six circles Oi(ri) (i = 1, 2, . . . , 6) are inscribed into the curvilinear
triangles AiPAi+1 for i = 1, 2, . . . , 6, (A7 ≡ A1) (See Figure 1), then

r1r3 + r3r5 + r5r1 = r2r4 + r4r6 + r6r2.

This result was proposed by Borislav Mirchev [2] of Bulgaria, ten years ago. No
traditional proof is known for this result, only an analytic solution was provided
by Leo Giugiuc of Romania, almost ten years ago. Here we offer a traditional
proof.

2. Proof of theorem 1.1

Proof. Join P,O1; P,O3; P,O5; O,P ; O,O1; O,O3, and O,O5. Let N1 be
the orthogonal projection of O1 on A1A4. Since O1N1 = r1 and ∠N1PO1 =
∠A1PO1 = 1

2
∠A1PA2 = 30◦, therefore, PO1 = 2r1. Similarly, PO3 = 2r3 and

PO5 = 2r5. Also, ∠O1PO3 = ∠O1PO5 = 120◦, OO1 = R − r1, OO3 = R − r3,
and OO5 = R − r5. Let ∠OPO1 = θ and OP = m. We assume a = r1, b = r3,
and c = r3 for easier presentation.

Figure 2.

Using cosine law to triangle OPO1, we get

cos θ =
m2 + 4r21 − (R− r1)2

4mr1
=
m2 + 4a2 − (R− a)2

4ma
. (1)

Since ∠OPO3 = 120◦ − θ, using cosine law to triangle OPO3, we get

cos(120◦ − θ) =
m2 + 4r23 − (R− r3)2

4mr3
=
m2 + 4b2 − (R− b)2

4mb
. (2)

Since ∠OPO5 = 120◦ + θ, using cosine law to triangle OPO5, we get

cos(120◦ + θ) =
m2 + 4r25 − (R− r5)2

4mr5
=
m2 + 4c2 − (R− c)2

4mc
. (3)
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Using (1), (2), (3), and the following well-known identity

cos θ + cos(120◦ − θ) + cos(120◦ + θ) = 0,

we can easily derive

(R2 −m2)(ab+ bc+ ca) = 6Rabc+ 3abc(a+ b+ c). (4)

Again, using (1), (2), (3), and the following well-known identity

cos θ cos(120◦ − θ) + cos(120◦ − θ) cos(120◦ + θ) + cos(120◦ + θ) cos θ = −3

4
,

we get ∑
a, b, c

(
m2 + 4a2 − (R− a)2

4ma

)
·
(
m2 + 4b2 − (R− b)2

4mb

)
= −3

4
. (5)

Simplifying we obtain

(R2−m2)2(a+b+c)−(R2−m2){4R(ab+bc+ca)+3(a2b+ab2+b2c+bc2+c2a+ca2)}

+ 12R2abc+ 12Rabc(a+ b+ c) + 9abc(ab+ bc+ ca) = −3

4
× 16m2abc. (6)

Multiplying (4) by 4R and rearranging, we get

12Rabc(a+ b+ c) = 4R(R2 −m2)(ab+ bc+ ca)− 24R2abc. (7)

Using (7) and the following well-known identity

a2b+ ab2 + b2c+ bc2 + c2a+ ca2 = (a+ b+ c)(ab+ bc+ ca)− 3abc,

from (6), we obtain

(R2−m2)2(a+b+c)−4R(R2−m2)(ab+bc+ca)−3(R2−m2)(a+b+c)(ab+bc+ca)

+ 9abc(R2 −m2) + 12R2abc+ 4R(R2 −m2)(ab+ bc+ ca)

− 24R2abc+ 9abc(ab+ bc+ ca) + 12m2abc = 0,

which gives

(R2 −m2)2(a+ b+ c)− 3(R2 −m2)(a+ b+ c)(ab+ bc+ ca)

− 3abc(R2 −m2) + 9abc(ab+ bc+ ca) = 0,

which can be factorized as

[(R2 −m2)− 3(ab+ bc+ ca)][(R2 −m2)(a+ b+ c)− 3abc] = 0.

The first factor gives

ab+ bc+ ca =
1

3
(R2 −m2). (8)

The second factor gives

R2 −m2 =
3abc

a+ b+ c
, (9)

which is not possible, as (4) and (9) give

2R(a+ b+ c) + a2 + b2 + c2 + ab+ bc+ ca = 0,

but the sum of positive terms cannot be zero.

Hence

r1r3 + r3r5 + r5r1 = ab+ bc+ ca =
1

3
(R2 −m2). (10)
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Similarly, if we join O with O2, O4, and O6, we get ∠OPO2 = 60◦ − θ,
∠OPO4 = 180◦− θ, and ∠OPO6 = 60◦+ θ. Assuming 60◦− θ = β, we may write
∠OPO2 = β, ∠OPO4 = 120◦ + β, and ∠OPO6 = 120◦ − β.

Using cosine law to triangle OPO2, we get

cos β =
m2 + 4r22 − (R− r2)2

4mr2
.

Using cosine law to triangle OPO4, we get

cos(120◦ + β) =
m2 + 4r24 − (R− r4)2

4mr4
.

Using cosine law to triangle OPO6, we get

cos(120◦ − β) =
m2 + 4r26 − (R− r6)2

4mr6
.

Hence the two trigonometrical identities mentioned before also hold in this case.
Therefore, by similar calculations, we can get

r2r4 + r4r6 + r6r2 =
1

3
(R2 −m2). (11)

Hence from (10) and (11), we get

r1r3 + r3r5 + r5r1 = r2r4 + r4r6 + r6r2 =
1

3
(R2 −m2) =

1

3
(R2 −OP 2).

�

3. Expressions of R in terms of ri

For the above configuration, we present three different expressions for R. Note
that (4) holds for pairs {r1, r3, r5} and {r2, r4, r6}. Using (4) and (8), we can write

3(ab+ bc+ ca)2 = 3abc(2R + a+ b+ c).

It gives

R =
(ab+ bc+ ca)2 − abc(a+ b+ c)

2abc
.

Hence in terms of r1, r3, and r5, we can write

R =
(r1r3 + r3r5 + r5r1)

2 − r1r3r5(r1 + r3 + r5)

2r1r3r5
.

Similarly, in terms of r2, r4, and r6, we can write

R =
(r2r4 + r4r6 + r6r2)

2 − r2r4r6(r2 + r4 + r6)

2r2r4r6
.

Since we have r1r3 + r3r5 + r5r1 = r2r4 + r4r6 + r6r2, the above two expressions
give

R =
r1r3r5(r1 + r3 + r5)− r2r4r6(r2 + r4 + r6)

2(r2r4r6 − r1r3r5)
.
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4. An Invariant Relationship

The next relationship we are going to prove holds for all circles either tangent
internally or externally. That is why we call it an invariant relationship. Also,
the angles between any two successive chords are not necessarily 60◦.

Theorem 4.1. Through point P inside circle O(R) three straight lines are drawn
and they cut the circle O(R) successively, in six points-Ai (i = 1, 2, . . . , 6). Let six
circles Oi(ri) (i = 1, 2, . . . , 6) are inscribed into the curvilinear triangles AiPAi+1

for i = 1, 2, . . . , 6, (A7 ≡ A1), and six circles O′i(ρi) externally touch O(R)
and tangent to rays PAi and PAi+1 for (i = 1, 2, . . . , 6) where ∠A1PA2 = α1,
∠A2PA3 = α2 and ∠A3PA4 = α3. Then the following relationships

λ1(a1 + a4)

(
1

a2
+

1

a5

)
+ λ2(a2 + a5)

(
1

a3
+

1

a6

)
+ λ3(a3 + a6)

(
1

a1
+

1

a4

)
=λ2(a2 + a5)

(
1

a1
+

1

a4

)
+ λ3(a3 + a6)

(
1

a2
+

1

a5

)
+ λ1(a1 + a4)

(
1

a3
+

1

a6

)
hold if, all ai are replaced by ri or, all ai are replaced by ρi for i = 1, 2, . . . , 6 where
λj = cot2

αj

2
for j = 1, 2, 3.

Proof. (Internal Case) Consider an opposite pair of circles O1(r1) and O4(r4).
Let N1 and N4 be the orthogonal projections of O1 and O4 on A1A4, respectively.
Join O1, N1; O4, N4; P,O; P,O1; P,O4. Since ∠O1PN1 = ∠O4PN4 = α1

2
, then

PO1 = kr1 and PO4 = kr4, where k = cosec α1

2
. Note that OO1 = R − r1 and

OO4 = R− r4.

Figure 3.

Applying Stewart’s theorem on 4OO1O4 (See Figure 3), we get

OO2
4 · PO1 +OO2

1 · PO4 = O1O4(OP
2 + PO1 · PO4)

=⇒ (R− r4)2 · kr1 + (R− r1)2 · kr4 = k(r1 + r4)(OP
2 + k2r1r4)

=⇒ R2 −OP 2 =
4Rr1r4
r1 + r4

+ (k2 − 1)r1r4 =
4Rr1r4
r1 + r4

+ r1r4 cot2
α1

2
.



156 Relationships Between Radii in a Six-Circle Configuration

Similarly, considering other opposite pairs {O2(r2), O5(r5)}, {O3(r3), O6(r6)} and
combining the above result, we may write

R2 −OP 2 =
4Rr1r4
r1 + r4

+ λ1r1r4 =
4Rr2r5
r2 + r5

+ λ2r2r5 =
4Rr3r6
r3 + r6

+ λ3r3r6,

where λj = cot2
αj

2
for j = 1, 2, 3.

The above expressions can be written as

4R + λ1(r1 + r4)
1

r1
+

1

r4

=
4R + λ2(r2 + r5)

1

r2
+

1

r5

=
4R + λ3(r3 + r6)

1

r3
+

1

r6

,

which implies

λ1(r1 + r4)− λ2(r2 + r5)
1

r1
+

1

r4
− 1

r2
− 1

r5

=
λ2(r2 + r5)− λ3(r3 + r6)

1

r2
+

1

r5
− 1

r3
− 1

r6

.

Finally, it gives

λ1(r1 + r4)

(
1

r2
+

1

r5

)
+ λ2(r2 + r5)

(
1

r3
+

1

r6

)
+ λ3(r3 + r6)

(
1

r1
+

1

r4

)
=λ2(r2 + r5)

(
1

r1
+

1

r4

)
+ λ3(r3 + r6)

(
1

r2
+

1

r5

)
+ λ1(r1 + r4)

(
1

r3
+

1

r6

)
.

External Case: Consider an opposite pair of circles O′1(ρ1) and O′4(ρ4). Let N ′1
andN ′4 be the orthogonal projections of O′1 and O′4 on extended A1A4, respectively.
Join O′1, N

′
1; O

′
4, N

′
4; P,O; P,O′1; P,O

′
4. Since ∠O′1PN

′
1 = ∠O′4PN

′
4 = α1

2
, then

PO′1 = kρ1 and PO′4 = kρ4, where k = cosec α
2
. Note that OO′1 = R + ρ1 and

OO′4 = R + ρ4.

Figure 4.

Applying Stewart’s theorem on 4OO′1O′4 (See Figure 4), we get

OO′24 · PO′1 +OO′21 · PO′4 = O′1O
′
4(OP

2 + PO′1 · PO′4)

=⇒ (R + ρ4)
2 · kρ1 + (R + ρ1)

2 · kρ4 = k(ρ1 + ρ4)(OP
2 + k2ρ1ρ4)

=⇒ R2 −OP 2 = −4Rρ1ρ4
ρ1 + ρ4

+ (k2 − 1)ρ1ρ4 = −4Rρ1ρ4
ρ1 + ρ4

+ ρ1ρ4 cot2
α1

2
.
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Hence by exactly similar calculations as in the internal case, we obtain

λ1(ρ1 + ρ4)

(
1

ρ2
+

1

ρ5

)
+ λ2(ρ2 + ρ5)

(
1

ρ3
+

1

ρ6

)
+ λ3(ρ3 + ρ6)

(
1

ρ1
+

1

ρ4

)
=λ2(ρ2 + ρ5)

(
1

ρ1
+

1

ρ4

)
+ λ3(ρ3 + ρ6)

(
1

ρ2
+

1

ρ5

)
+ λ1(ρ1 + ρ4)

(
1

ρ3
+

1

ρ6

)
.�

If the angles between any two successive straight lines pass through P are equal
then α1 = α2 = α3 = 60◦. So λj (j = 1, 2, 3) are also equal. Then can drop λj
from the above expressions and get λ free expressions [[5], [6]].

5. Generalization

A generalization of Theorem 4.1 for 2n circles is possible by a similar approach.
Let’s discuss the internal case. The external case is similar.

Theorem 5.1. Through point P inside circle O(R), n straight lines are drawn and
they cut the circle O(R) successively, in 2n points-Ai (i = 1, 2, . . . , 2n). Let 2n
circles Oi(ri) (i = 1, 2, . . . , 2n) be inscribed into the curvilinear triangles AiPAi+1

for i = 1, 2, . . . , 2n (A2n+1 ≡ A1), and where the angles between two successive
straight lines at P are αp (p = 1, 2, . . . , n) such that ∠ApPAp+1 = αp. If we choose
any three pair of opposite circles {Oi(ri), Oi+n(ri+n)}, {Oj(rj), Oj+n(rj+n)}, and
{(Ok(rk), Ok+n(rk+n)} for 1 ≤ i < j < k ≤ n then the following relationships

λi(ri + ri+n)

(
1

rj
+

1

rj+n

)
+ λj(rj + rj+n)

(
1

rk
+

1

rk+n

)
+ λk(rk + rk+n)

(
1

ri
+

1

ri+n

)

=λj(rj + rj+n)

(
1

ri
+

1

ri+n

)
+ λk(rk + rk+n)

(
1

rj
+

1

rj+n

)
+ λi(ri + ri+n)

(
1

rk
+

1

rk+n

)
.

hold where λq = cot2 αq

2
(q = i, j, k) are some positive real numbers.

Proof. Consider three pair of opposite circles {Oi(ri), Oi+n(ri+n)}, {Oj(rj), Oj+n(rj+n)},
and {(Ok(rk), Ok+n(rk+n)} for 1 ≤ i < j < k ≤ n.

Applying Stewart’s theorem as before we get

R2 −OP 2 =
4Rrtrt+n
rt + rt+n

+ rtrt+n cot2
αt
2
, (t = i, j, k).

Eliminating R from the above three fractions, we obtain the desired relationship.
If we replace all ‘r’ with ‘ρ’, i.e., if we consider all external circles then the above
theorem also holds and the proof is almost the same. �

6. Relationships between internal and external radii

Now we will explore relationships between internal and external radii. Let’s prove
the following theorem.

Theorem 6.1. Through point P inside circle O(R) two straight lines are drawn
at an angle α to each other and they cut the circle O(R) successively, in four
points-Ai (i = 1, 2, 3, 4). If two circles Oi(ri) (i = 1, 2) are inscribed into the
curvilinear triangles AjPAj+1 (j = 1, 2), respectively, and two circles O′i(ρi) (i =
1, 2) externally touch O(R) and tangent to rays PAj and PAj+1 for j = 1, 3,
respectively, (See Figure 5) then we have r1ρ2 = r2ρ1.
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Figure 5.

First Proof: Consider the opposite pair of circles O1(r1) and O′2(ρ2). Let N1 and
N ′2 be the orthogonal projections of O1 and O′2 on extended A1A3, respectively.
Join O1, N1; O

′
2, N

′
2; P,O; P,O1; P,O

′
2. Since 4PO1N1 ∼ 4PO′2N ′2, we have

PO1 : PO′2 = r1 : ρ2. Therefore, we can take PO1 = kr1 and PO′2 = kρ2. Note
that OO1 = R− r1 and OO′2 = R + ρ2.

Applying Stewart’s theorem on 4OO1O
′
2 (See Figure 5), we get

OO′22 · PO1 +OO2
1 · PO′2 = O1O

′
2(OP

2 + PO1 · PO′2)

=⇒ (R + ρ2)
2 · kr1 + (R− r1)2 · kρ2 = (kr1 + kρ2)(OP

2 + k2r1ρ2)

=⇒ R2 −OP 2 = (k2 − 1)r1ρ2.

Again, since ∠A1PA2 = α, we have ∠A1PO1 = ∠N1PO1 = α/2. Therefore, from
the right triangle N1PO1, we get PO1 = r1 cosec α

2
= kr1 and hence k = cosec α

2
.

Therefore, we have

R2 −OP 2 = r1ρ2 cot2
α

2
,

which implies

r1ρ2 = (R2 −OP 2) tan2 α

2
.

Since ∠A3PA4 = α, similarly, we obtain

r2ρ1 = (R2 −OP 2) tan2 α

2
.

The above two relations imply r1ρ2 = r2ρ1. �

Second Proof: We can also prove the above Theorem by the Inversion Technique.
In this case, we need to choose the circle of center P orthogonal to the circle O(R)
as the circle of inversion of the figure. Since point P lies inside the circle O(R),
the power of inversion is negative and so the circle of inversion has a radius of
imaginary number. According to the theory of inversion, an inversion with center
P and negative power −p is equivalent to an inversion with center P and positive
power p followed by a reflection in P .

Here p =
√
PA1 · PA3 =

√
PA2 · PA4. This inversion map circlesO1(r1) toO′2(ρ2)

and O′1(ρ1) to O2(r2). Let N1, N2, N
′
1, and N ′2 be the orthogonal projections of

O1, O2, O
′
1, and O′2 on A1A3, respectively. Join O1, N1; O

′
1, N

′
1; O2, N2; O

′
2, N

′
2.
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Figure 6.

From the theory of inversion, we have (See Figure 6)

PN1 · PN ′2 = p2 = PN ′1 · PN2.

Since triangles PO1N1, PO
′
2N
′
2, PO

′
1N
′
1, and PO2N2 are similar, then from the

above relation, it follows that r1ρ2 = r2ρ1. �

Remark. The above result was also proposed by Koshizuka in 1828 in Tochigi
prefecture [4]. Instead of internal common tangents of four circles ρ1, r1, r2, and
ρ2, if we take external common tangents (if exist) the same relationship r1ρ2 = r2ρ1
also holds. This version is known as Ohara’s Theorem [[3], p.97]. This result can
be proved using Stewart’s theorem or by inversion as above. See Figure 7.

Figure 7.

Theorem 6.2. Through point P inside circle O(R) three straight lines are drawn
and they cut the circle O(R) successively, in six points-Ai (i = 1, 2, . . . , 6). Let six
circles Oi(ri) (i = 1, 2, . . . , 6) are inscribed into the curvilinear triangles AiPAi+1

for i = 1, 2, . . . , 6, (A7 ≡ A1), and six circles O′i(ρi) are externally touch O(R)
and tangent to rays PAi and PAi+1 for (i = 1, 2, . . . , 6) where ∠A1PA2 = α1,
∠A2PA3 = α2 and ∠A3PA4 = α3. Define

E1 =λ1(r1 + r4)

(
1

r2
+

1

r5

)
+ λ2(r2 + r5)

(
1

r3
+

1

r6

)
+ λ3(r3 + r6)

(
1

r1
+

1

r4

)
,
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E2 =λ2(r2 + r5)

(
1

r1
+

1

r4

)
+ λ3(r3 + r6)

(
1

r2
+

1

r5

)
+ λ1(r1 + r4)

(
1

r3
+

1

r6

)
,

E3 =λ1(ρ1 + ρ4)

(
1

ρ2
+

1

ρ5

)
+ λ2(ρ2 + ρ5)

(
1

ρ3
+

1

ρ6

)
+ λ3(ρ3 + ρ6)

(
1

ρ1
+

1

ρ4

)
,

E4 =λ2(ρ2 + ρ5)

(
1

ρ1
+

1

ρ4

)
+ λ3(ρ3 + ρ6)

(
1

ρ2
+

1

ρ5

)
+ λ1(ρ1 + ρ4)

(
1

ρ3
+

1

ρ6

)
.

Then we have E1 = E2 = E3 = E4 where λj = cot2
αj

2
for j = 1, 2, 3.

Proof. From Theorem 4.1, we get E1 = E2 and E3 = E4. It is enough to prove
E1 = E4. We have ∠A1PA2 = α1 = ∠A4PA5 , ∠A2PA3 = α2 = ∠A5PA6, and
∠A3PA4 = α3 = A6PA1. Applying Theorem 6.1 to quadruples of circles
{(O1), (O′4), (O4), (O′1)}, {(O2), (O′5), (O5), (O′2)}, and {(O3), (O′6), (O6), (O

′
3)},

respectively, we obtain

r1ρ4 = r4ρ1 = (R2 −OP 2) tan2 α1

2
, r2ρ5 = r5ρ2 = (R2 −OP 2) tan2 α2

2
,

and
r3ρ6 = r6ρ3 = (R2 −OP 2) tan2 α3

2
.

Therefore, we may write

(r1 + r4)

(
1

r2
+

1

r5

)
cot2

α1

2
=

(
1

ρ4
+

1

ρ1

)
(ρ5 + ρ2) cot2

α2

2
,

(r2 + r5)

(
1

r3
+

1

r6

)
cot2

α2

2
=

(
1

ρ5
+

1

ρ2

)
(ρ6 + ρ3) cot2

α3

2
,

and

(r3 + r6)

(
1

r4
+

1

r1

)
cot2

α3

2
=

(
1

ρ6
+

1

ρ3

)
(ρ1 + ρ4) cot2

α1

2
.

Adding the above three relations, we obtain E1 = E4, and we are done. �

Corollary 6.1. For six pair of circles Oi(ri) and O′i(ρi) for i = 1, 2, . . . , 6, we
have

r1ρ4 = r4ρ1, r2ρ5 = r5ρ2, and r3ρ6 = r6ρ3.

Corollary 6.2. If α1 = α2 = α3 = 60◦ then we have

r1ρ4 = r4ρ1 = r2ρ5 = r5ρ2 = r3ρ6 = r6ρ3 = (R2 −OP 2)/3.

Theorem 6.3. Through point P inside circle O(R) three straight lines are drawn
at 60◦ to each other and they cut the circle O(R) successively, into six points-Ai
(i = 1, 2, . . . , 6). If six circles O′i(ρi) (i = 1, 2, . . . , 6) externally touch O(R) and
tangent to rays PAi and PAi+1 for i = 1, 2, . . . , 6, (A7 ≡ A1) then we have

1

ρ1ρ3
+

1

ρ3ρ5
+

1

ρ5ρ1
=

1

ρ2ρ4
+

1

ρ4ρ6
+

1

ρ6ρ2
.

Proof. If six circles Oi(ri) (i = 1, 2, . . . , 6) are inscribed into the curvilinear trian-
gles AiPAi+1 for i = 1, 2, . . . , 6, (A7 ≡ A1) then Theorem 1.1 gives

r1r3 + r3r5 + r5r1 = r2r4 + r4r6 + r6r2.

Also, we have
r1ρ4 = r4ρ1 = r2ρ5 = r5ρ2 = r3ρ6 = r6ρ3.
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Eliminating ri (i = 1, 2, . . . , 6) from the above two equations, we get

1

ρ1ρ3
+

1

ρ3ρ5
+

1

ρ5ρ1
=

1

ρ2ρ4
+

1

ρ4ρ6
+

1

ρ6ρ2
.

�

7. Expressions for R in terms of ρi

We find R in terms of ρi for i = 1, 2, . . . , 6 when three straight lines make equal
angles at P . In this case, Corollary 6.2 gives

r1ρ4 = r4ρ1 = r2ρ5 = r5ρ2 = r3ρ6 = r6ρ3 =
1

3
(R2 −OP 2) = k (say.)

From Theorem 1.1, we have

r1r3 + r3r5 + r5r1 = r2r4 + r4r6 + r6r2 =
1

3
(R2 −OP 2) = k.

Eliminating ri from the above two equations we obtain,

k =
ρ2ρ4ρ6

ρ2 + ρ4 + ρ6
=

ρ1ρ3ρ5
ρ1 + ρ3 + ρ5

=
ρ2ρ4ρ6 − ρ1ρ3ρ5

(ρ2 + ρ4 + ρ6)− (ρ1 + ρ3 + ρ5)
.

Recall that

R =
r1r3r5(r1 + r3 + r5)− r2r4r6(r2 + r4 + r6)

2(r2r4r6 − r1r3r5)
.

Changing ri to ρi, we obtain

R =
k

2
· (ρ1ρ3ρ5)

2(ρ2ρ4 + ρ4ρ6 + ρ6ρ2)− (ρ2ρ4ρ6)
2(ρ1ρ3 + ρ3ρ5 + ρ5ρ1)

ρ1ρ2ρ3ρ4ρ5ρ6(ρ2ρ4ρ6 − ρ1ρ3ρ5)
.

Using the value of k, we finally obtain

R =
(ρ1ρ3ρ5)

2(ρ2ρ4 + ρ4ρ6 + ρ6ρ2)− (ρ2ρ4ρ6)
2(ρ1ρ3 + ρ3ρ5 + ρ5ρ1)

2ρ1ρ2ρ3ρ4ρ5ρ6{(ρ2 + ρ4 + ρ6)− (ρ1 + ρ3 + ρ5)}
.

The configuration stated in Theorem 1.1 is very rich. It has inspired many people
to create their own problems. Several other properties of this configuration can
be found on the website [1] of Late Dr. Alexander Bogomolny. He was the man
who popularized this problem. So I have dedicated this paper to him.
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