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Abstract. If P is a point inside 4ABC, then the cevians through P divide
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1. Introduction

Let P be any point inside a triangle ABC. The cevians through P divide 4ABC
into six smaller triangles. In a previous paper [5], we found relationships between
the radii of the circles inscribed in these triangles.

For example, if P is at the orthocenter H, as shown in Figure 1, then we found
that r1r3r5 = r2r4r6, where the ri are radii of the incircles as shown in the figure.

Figure 1. r1r3r5 = r2r4r6

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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In this paper, we will find similar results using excircles instead of incircles. When
the cevians through a point P interior to a triangle ABC are drawn, many smaller
triangles of various sizes are formed. These triangles have three excircles each.
In this paper, we only investigate two configurations of six excircles. These two
configurations are shown in Figure 2. Note that in configuration 1, the circle with
radius r1 is an excircle of 4BAD. In configuration 2, the circle with radius r1 is
an excircle of 4BPD.

Figure 2. configurations

Notation: If X and Y are points, then we use the notation XY to denote either
the line segment joining X and Y or the length of that line segment, depending
on the context. The notation [XYZ] denotes the area of 4XY Z.

2. The Orthocenter

When P is the orthocenter of4ABC, we have two results, depending upon which
excircles are used.

Theorem 2.1. Suppose the orthocenter, H, of 4ABC lies inside 4ABC. Let r1

through r6 be the radii of six circles tangent to the sides of 4ABC and the cevians
through H situated as shown in Figure 3. Then r1r3r5 = r2r4r6.

Proof. Note that the figure consisting of 4ABD together with the circle with
radius r1 is similar to the figure consisting of 4CBF together with the circle
with radius r6. Corresponding lengths in similar figures are in proportion, so
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Figure 3. r1r3r5 = r2r4r6

r1/AD = r6/CF . Similarly, we find r3/BE = r2/AD and r5/CF = r4/BE.
Therefore

r1

r6
· r3

r2
· r5

r4
=

AD

CF
· BE

AD
· CF

BE
= 1

which implies r1r3r5 = r2r4r6. ⇤

A similar result occurs when di↵erent excircles are used.

Theorem 2.2. Suppose the orthocenter, H, of 4ABC lies inside 4ABC. Let r1

through r6 be the radii of six circles tangent to the sides of 4ABC and the cevians
through H situated as shown in Figure 4. Then r1r3r5 = r2r4r6.

Figure 4. r1r3r5 = r2r4r6

Proof. Note that the figure consisting of 4HBD together with the circle with
radius r1 is similar to the figure consisting of 4HAE together with the circle
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with radius r4. Corresponding lengths in similar figures are in proportion, so
r1/BH = r4/AH. Similarly, we find r3/CH = r6/BH and r5/AH = r2/CH.
Therefore

r1

r4
· r3

r6
· r5

r2
=

BH

AH
· CH

BH
· AH

CH
= 1

which implies r1r3r5 = r2r4r6. ⇤

3. The Centroid

Next, we will consider the case when the interior point P is the centroid. We start
with a lemma.

Lemma 3.1. Let M be the centroid of 4ABC and let the medians be AD, BE,
and CF . Label the segments BD, DC, CE, EA, AF , and FB with the numbers
from 1 to 6 as shown in Figure 5. Let si be the semiperimeter of the triangle
formed by the segment labeled i and the vertex of 4ABC opposite that segment.
Then

(1) s1 + s3 + s5 = s2 + s4 + s6.

Figure 5. medians

Proof. We have the following six equations for the perimeters of the six triangles.

2s1 = BD + AD + AB, 2s2 = DC + AD + CA,

2s3 = CE + BE + BC, 2s4 = EA + BE + AB,

2s5 = AF + CF + CA, 2s6 = FB + CF + BC.

Thus, 2s1+2s3+2s5�(2s2+2s4+2s6) = (BD�DC)+(CE�EA)+(AF�FB) = 0
and the lemma follows. ⇤

Recall the well-known formula for the length of the radius of an excircle. If the
sides of a triangle have lengths a, b, and c, and the semiperimeter is s, then the
radius of the excircle that touches the side of length a is K/(s � a), where K is
the area of the triangle. See, for example, [1, p. 79].

We can now state our results.
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Theorem 3.1. Let M be the centroid of 4ABC and let the medians be AD, BE,
and CF . Let r1 through r6 be the radii of six circles tangent to the sides of 4ABC
and the cevians through M situated as shown in Figure 6. Then

1

r1
+

1

r3
+

1

r5
=

1

r2
+

1

r4
+

1

r6
.

Figure 6.

Proof. The circle with radius ri is an excircle of a triangle as shown in Figure 6.
Let si be the semiperimeter of that triangle and let Ki be the area of that triangle.
Note that each Ki is half the area of 4ABC. Denote this common value by K.
From the formula for the length of the radius of an excircle, we have

1

r1
=

s1 �BD

K
,

1

r3
=

s3 � CE

K
,

1

r5
=

s5 �AF

K
.

Adding gives
1

r1
+

1

r3
+

1

r5
=

s1 + s3 + s5 � s

K

where s = BD + CE + AF is the semiperimeter of 4ABC. In the same manner,
we find

1

r2
+

1

r4
+

1

r6
=

s2 + s4 + s6 � s

K
.

From Lemma 3.1, s1 + s3 + s5 = s2 + s4 + s6. Thus,

1

r1
+

1

r3
+

1

r5
=

1

r2
+

1

r4
+

1

r6

as required. ⇤

A similar result occurs when di↵erent excircles are used.
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Theorem 3.2. Let M be the centroid of 4ABC and let the medians be AD, BE,
and CF . Let r1 through r6 be the radii of six circles tangent to the sides of 4ABC
and the cevians through M situated as shown in Figure 7. Then

1

r1
+

1

r3
+

1

r5
=

1

r2
+

1

r4
+

1

r6
.

Figure 7.

Proof. The proof is similar to the proof of Theorem 3.1. In this case, the circles
are excircles of triangles BMD, CMD, CME, AME, AMF , and BMF . These
six triangles have the same area and their semiperimeters satisfy equation (1).
The details are omitted. ⇤

4. The Gergonne Point

Suppose the incircle of 4ABC touches the sides BC, CA, and AB at points D,
E, and F , respectively (Figure 8). Then the cevians AD, BE, and CF , meet at
a point, Ge, known as the Gergonne Point of the triangle [1, p. 160].

Figure 8. Gergonne Point
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We will now find relationships between certain excircles associated with a triangle
and the three cevians through its Gergonne Point. We start with a lemma.

Lemma 4.1. Let D be the contact point of the incircle of 4ABC with side BC
(Figure 9). The excircle of 4ABD that touches side BD has radius r1. The
excircle of 4ADC that touches side DC has radius r2. Then

r1

r2
=

BD

DC
.

Figure 9.
r1

r2
=

BD

DC

The following proof is due to Duca [2].

Proof. Using the formula for the radius of an excircle, we have

(2) r1 =
2[ABD]

AB + AD �BD
and r2 =

2[ADC]

CA + AD �DC
.

By a well-known property of the incircle of a triangle [1, p. 87], BD = s�CA and
DC = s�AB, where s = (AB+BC+CA)/2. Thus CA+BD = AB+DC, which
implies AB + AD�BD = CA + AD�DC. Therefore, the two denominators in
equation (2) are equal. Hence r1/r2 = [ABD]/[ADC]. Since triangles ABD and
ADC have the same altitude from A, the ratio of their areas will be proportional
to the ratio of their bases. Consequently,

r1

r2
=

[ABD]

[ADC]
=

BD

DC
.

⇤

We can now easily prove the following theorem.
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Theorem 4.1. Let r1 through r6 be the radii of six circles tangent to the sides of
4ABC and the cevians through the Gergonne point situated as shown in Figure 10.
Then r1r3r5 = r2r4r6.

Figure 10. r1r3r5 = r2r4r6

Proof. By Lemma 4.1,

r1

r2
· r3

r4
· r5

r6
=

BD

DC
· CE

EA
· AF

FB
.

The expression on the right is equal to 1 by Ceva’s Theorem. Thus, we have
r1r3r5 = r2r4r6. ⇤

5. The Nagel Point

Suppose the excircles of 4ABC touch the sides BC, CA, and AB at points D,
E, and F , respectively, as shown in Figure 11. Then the cevians AD, BE, and
CF meet at a point known as the Nagel Point of the triangle [1, p. 160].

Figure 11. Nagel Point
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Lemma 5.1. Let Na be the Nagel point of 4ABC. The cevians AD, BE, and
CF through Na divide 4ABC into six small triangles numbered from 1 to 6 as
shown in Figure 12. Let Ki be the area of triangle i. Then K1K3K5 = K2K4K6.

Figure 12. Nagel Point

Proof. This is a special case of Theorem 7.4 from [5]. ⇤

Lemma 5.2. Let Na be the Nagel point of4ABC. The cevians AD, BE, and CF
through Na divide 4ABC into six small triangles numbered from 1 to 6 as shown
in Figure 12. Let si be the semiperimeter of triangle i. Then s1s3s5 = s2s4s6.

Proof. Let a = BC, b = CA, c = AB, and s = (a + b + c)/2. It is well-known
that AF = DC = s� b, FB = CE = s� a, and BD = EA = s� c [1, p. 88]. By
Stewart’s Theorem, we can compute the lengths of cevians AD, BE, and CF in
4ABC. We get

AD =

s

s2 � 4K2

a(s� a)
, BE =

s

s2 � 4K2

b(s� b)
, CF =

s

s2 � 4K2

c(s� c)
,

where K is the area of 4ABC and s is its semiperimeter. We can then use the
Theorem of Menelaus on 4ADC with traversal BE to find the ratio of ANa to
NaD. We can use the same procedure to find how Na divides the other cevians.
We get

ANa

NaD
=

a

s� a
,

BNa

NaE
=

b

s� b
,

CNa

NaF
=

c

s� c
.

These formulas can also be found in [4]. This allows us to compute the lengths
of ANa, NaD, BNa, NaE, CNa, and NaF in terms of a, b, c, s, and K. This, in
turn, gives us expressions for s1, s2, s3, s4, s5, and s6. Simplifying s1s3s5� s2s4s6

using a computer algebra system shows that the result is 0. ⇤

Theorem 5.1. Let Na be the Nagel point of 4ABC. The cevians AD, BE,
and CF through Na divide 4ABC into six small triangles numbered from 1 to
6 as shown in Figure 12. Let ri be the radius of the incircle of triangle i. Then
r1r3r5 = r2r4r6.

Proof. Using the notation from Lemmas 5.1 and 5.2, we have ri = Ki/si, so

r1r3r5 =
K1

s1

K3

s3

K5

s5
=

K2

s2

K4

s4

K6

s6
= r2r4r6

as required. ⇤



82 Relationships Between Six Excircles

A similar result holds for excircles.

Lemma 5.3. Let Na be the Nagel point of 4ABC. The cevians AD, BE, and
CF through Na divide 4ABC into six small triangles numbered from 1 to 6 as
shown in Figure 12. Let si be the semiperimeter of triangle i. Then

(s1 �BD)(s3 � CE)(s5 �AF ) = (s2 �DC)(s4 � EA)(s6 � FB).

Proof. The proof is essentially the same as the proof of Lemma 5.2. Expressions
for all the needed lengths have already been found in terms of a, b, c, s, and K.
Simplifying (s1�BD)(s3�CE)(s5�AF )� (s2�DC)(s4�EA)(s6�FB) using
a computer algebra system shows that the result is 0. ⇤

Theorem 5.2. Let r1 through r6 be the radii of six circles tangent to the sides of
4ABC and the cevians through the Nagel point situated as shown in Figure 13.
Then r1r3r5 = r2r4r6.

Figure 13. r1r3r5 = r2r4r6

Proof. The proof is the same as the proof of Theorem 5.1 only now ri =
Ki

(s� ai)
where ai is the length of the side of triangle i lying along a side of 4ABC. ⇤

The results of Theorems 5.1 and 5.2 are so elegant that it is unlikely that they
are true only because the complicated expressions found in the proofs of Lemmas
5.2 and 5.3 just happen to simplify to 0.

Open Question 1. Are there simple proofs of Theorems 5.1 and 5.2 that do not
involve a large amount of algebraic computation requiring computer simplification?
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6. Relationship Between Inradii and Exradii

We can make use of relationships between the radii of incircles associated with a
figure to find relationships between the radii of associated excircles.

The following basic result was known to Japanese geometers of the Edo period as
evidenced by the fact that it is equivalent to a problem found in the 1823 text,
Sangaku Shousen [6], later printed as problem 4.3.3 in [3, p. 21].

Theorem 6.1 (Inradius/Exradius Invariant). Let A be a fixed point and let L
be a fixed line that does not pass through A. Let B and C be variable points on
L, with B 6= C. Let r be the inradius of 4ABC and let ra be the radius of the

excircle that touches side BC (Figure 14). Then
1

r
� 1

ra
remains invariant as B

and C vary along L.

Figure 14. inradius and exradius

Proof. From the formulas for the length of an inradius and an exradius, we have

r =
K

s
and ra =

K

s� a
,

where a is the length of BC, K is the area of 4ABC, and s is its semiperimeter.
Thus

1

r
� 1

ra
=

s

K
� s� a

K
=

a

K
=

2

h
,

where h is the distance from A to L. This proves the theorem since h remains
fixed as B and C vary along L. ⇤

The following result follows immediately.

Theorem 6.2 (Relationship Between Two Incircles and Two Excircles). Let AD
be a cevian of 4ABC. Four circles are tangent to the sides of the triangle and
the cevian as shown in Figure 15. Then

1

r1
+

1

r4
=

1

r2
+

1

r3
.
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Figure 15. relationship between two incircles and two excircles

There is another nice relationship between inradii and exradii.

We start with a lemma.

Lemma 6.1 (Inradius/Exradius Fixed Angle Invariant). Let A be a fixed point
and let L1 and L2 be distinct fixed rays starting at A. Let B and C be variable
points on L1 and L2, respectively, neither coinciding with A. Let r be the inradius
of 4ABC and let ra be the radius of the excircle that touches side BC (Figure 16).
Let K be the area of 4ABC. Then rra/K remains invariant as B and C vary.

Figure 16. inradius and exradius

Proof. Let T be the contact point of the excircle with L1. It is known that AT = s,
where s is the semiperimeter of 4ABC [1, Theorem 158]. Let \BAC = ✓. Note
that the bisector of \BAC passes through the centers of the two circles. Since
K = rs, we have

rra

K
=

rra

rs
=

ra

s
=

ra

AT
= tan

✓

2
.

Thus, rra/K is invariant because the angle ✓ is fixed. ⇤

Theorem 6.3 (Relationship Between Six Incircles and Six Excircles). Let P be a
point inside4ABC. The cevians through P divide4ABC into six small triangles,
named T1 through T6 as shown in Figure 17. Let ri be the inradius of Ti. Let Ri

be the exradius of Ti that touches a side of 4ABC. Then

r1r3r5R1R3R5 = r2r4r6R2R4R6.
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Figure 17. six triangles

Proof. Note that in Figure 17, AD and BE are straight lines passing through P ,
so \BPD = \APE. By Lemma 6.1, r1R1/K1 = r4R4/K4, with similar identities
for the other two pairs of triangles. Therefore,

r1R1

K1
· r3R3

K3
· r5R5

K5
=

r4R4

K4
· r3R6

K6
· r2R2

K2
.

But K1K3K5 = K2K4K6 by Theorem 7.4 from [5]. Thus, r1r3r5R1R3R5 =
r2r4r6R2R4R6. ⇤

Alternate formulation of Theorem 6.3: In Figure 18, the product of the radii
of the yellow circles is equal to the product of the radii of the green circles.

Figure 18. twelve circles

Theorem 6.3 provides an alternate proof to some earlier theorems. Applying The-
orem 6.3 to Theorem 2.1 yields Theorem 2.2. Applying Theorem 6.3 to Theorem
5.1 yields Theorem 5.2.
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We also have the following companion result, coloring the circles di↵erently.

Consequence of Theorem 6.2: In Figure 19, the sum of the reciprocals of the
radii of the yellow circles is equal to the sum of the reciprocals of the radii of the
green circles.

Figure 19. twelve circles

7. The Circumcenter

The following theorem involving incircles was proven in [5].

Theorem 7.1. Let O be the circumcenter of 4ABC. The cevians through O
divide 4ABC into six small triangles and circles are inscribed in these triangles
as shown in Figure 20. The circle labeled i in the figure has radius ri. Then

1

r1
+

1

r3
+

1

r5
=

1

r2
+

1

r4
+

1

r6
.

Figure 20. circumcenter with incircles
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Applying Theorem 6.2 yields the following result about excircles.

Theorem 7.2. Let O be the circumcenter of 4ABC and let the cevians through
O be AD, BE, and CF . Let r1 through r6 be the radii of six circles tangent to the
sides of 4ABC and the cevians through O situated as shown in Figure 21. Then

1

r1
+

1

r3
+

1

r5
=

1

r2
+

1

r4
+

1

r6
.

Figure 21. circumcenter with excircles

8. The Incenter

The following theorem involving incircles was proven in [5].

Theorem 8.1. Let I be the incenter of 4ABC and suppose \ABC = 60�. The
cevians through I divide 4ABC into six small triangles and circles are inscribed
in these triangles as shown in Figure 22. The circle labeled i in the figure has
radius ri. Then

1

r1
+

1

r4
+

1

r5
=

1

r2
+

1

r3
+

1

r6
.

Figure 22. incenter with incircles
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Applying Theorem 6.2 yields the following result about excircles.

Theorem 8.2. Let I be the incenter of 4ABC and suppose \ABC = 60�. Let
r1 through r6 be the radii of six circles tangent to the sides of 4ABC and the
cevians through I situated as shown in Figure 23. Then

1

r1
+

1

r4
+

1

r5
=

1

r2
+

1

r3
+

1

r6
.

Figure 23. incenter with excircles

When we change \ABC from 60� to 120�, we get a surprising result.

Theorem 8.3. Let I be the incenter of 4ABC and suppose \ABC = 120�. Let
r1 through r6 be the radii of six circles tangent to the sides of 4ABC and the
cevians through I situated as shown in Figure 24. Then

1

r1
+

1

r3
+

1

r4
+

1

r6
=

1

r2
+

1

r5
.

Figure 24. incenter with excircles
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Proof. The proof is similar to the proof of Theorem 6.1 from [5]. Without loss of
generality, we assume the circumradius of 4ABC is 1/2. Then we use the Law
of Sines to find the lengths of all the line segments associated with 4ABC and
the three cevians in terms of the angles a and c. These values are given in [5].
Then noting that c = 30� � a, we use these values to compute the values of the
ri. Plugging these values into the expression

1

r1
+

1

r3
+

1

r4
+

1

r6
� 1

r2
� 1

r5

and simplifying (using a computer algebra system) gives 0. ⇤

The proof of Theorem 8.2 depends on the proof of Theorem 8.1 whose only known
proof (from [5]) involves computer simplification of complicated trigonometric
expressions.

Open Question 2. Are there simple proofs of Theorems 8.2 and 8.3 similar in
complexity to the other proofs in this paper?

In Theorems 8.2 and 8.3, \ABC has a fixed value (60� or 120�). We can wonder
what happens if we drop this restriction.

Theorem 8.4. Let I be the incenter of 4ABC. Let r1 through r6 be the radii
of six circles tangent to the sides of 4ABC and the cevians through I situated as
shown in Figure 25. If ↵ = 1

2\BAC, � = 1
2\CBA, � = 1

2\ACB, then

cos �

r1
+

cos↵

r3
+

cos�

r5
=

cos�

r2
+

cos �

r4
+

cos↵

r6
.

Figure 25. incenter with excircles

Proof. As with Theorem 8.3, the proof uses computer simplification of trigono-
metric expressions for the lengths of the segments in the figure. ⇤
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There can be many relationships between the ri. Although Theorem 8.4 involves
↵, �, and �, this does not preclude the existence of a relationship involving only
the ri.

Open Question 3. Is there a simple relationship between the radii of excircles
associated with an arbitrary triangle and the cevians through its incenter that does
not depend on the shape of the triangle?
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