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Abstract. If P is a point inside 4ABC, then the cevians through P extended
to the circumcircle of 4ABC create a figure containing a number of curvilinear
triangles. Each curvilinear triangle is bounded by an arc of the circumcircle and
two line segments lying along the sides or cevians of the original triangle. We give
theorems about the relationships between the radii of circles inscribed in various
sets of these curvilinear triangles.
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1. Introduction

A curvilinear triangle is a geometric figure bounded by three curves. The curves
are typically line segments and arcs of circles, in which case there is a unique circle
tangent to each of the three boundary curves. This circle is called the incircle of
the curvilinear triangle.

Wasan geometers loved to find relationships between the radii of circles inscribed
in curvilinear triangles. An example is shown in Figure 1 which comes from an
1841 book of Mathematical Formulae written by Yamamoto [12]. It is also given
as problem 5.3.9 in [4]. In the figure, AH ? BC and BA ? AC. There are
three curvilinear triangles of interest in the figure. The first curvilinear triangle

is bounded by BH, HA, and arc
_
AB. The second curvilinear triangle is bounded

by AH, HC, and arc
_
CA. The third curvilinear triangle is bounded by CA, AB,

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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and arc
_
BC. The radii of the circles inscribed in these curvilinear triangles are r1,

r2, and r3, respectively. Then the nice relationship that was found is r1 + r2 = r3.

Figure 1. r1 + r2 = r3

In this paper, we will find some other nice relationships between the inradii of
curvilinear triangles.

If a curvilinear triangle is convex and bounded by two straight line segments
and one circular arc, then we will call the resulting figure a skewed sector (see
Figure 2).

Figure 2. a skewed sector

Anatomy of a skewed sector.

• The two straight line segments are called the sides of the skewed sector.
• The point of intersection of the two sides is called the vertex of the skewed

sector.
• The angle between the two sides is called the vertex angle.
• The circular arc is referred to as the arc of the skewed sector.
• The circular measure of the arc of a skewed sector is called the arc angle.
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• The circle to which the arc belongs will be called the circle associated with
the skewed sector.

• The triangle formed by the vertex of a skewed sector and the endpoints of
its arc will be referred to as the triangle associated with the skewed sector.
This would be 4APB in Figure 2.

• When naming a skewed sector, the vertex will always be the middle letter.
Thus, the skewed sector in Figure 2 is named skewed sector APB.

• When the vertex of a skewed sector lies inside the associated circle, if the
sides of the skewed sector are extended back through the vertex, they will
intercept an arc of the associated circle. This arc is called the opposite arc
of the skewed sector. It is shown in red in Figure 3.

• The vertex of a skewed sector and the opposite arc form another skewed
sector called the opposite skewed sector. This is skewed sector A0PB0 in
Figure 3.

Figure 3. opposite arc

A segment of a circle is the figure bounded by an arc of a circle and the chord
joining the endpoints of that arc. The height (or sagitta) of the segment is the
distance from the midpoint of the chord to the midpoint of the arc.

If P is a point inside 4ABC, then the cevians through P extended to the cir-
cumcircle of 4ABC create a figure containing a number of skewed sectors. We
will find relationships between the radii of the circles inscribed in some of these
skewed sectors.

Notation.

• If X and Y are points, then we use the notation XY to denote either the
line segment joining X and Y or the length of that line segment, depending
on the context.

• A cevian of a triangle is a line segment from a vertex to the opposite side.
• We use the notation \XY Z to denote either the angle between XY and

Y Z or the measure of that angle, depending on the context.
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• The notation [XYZ] denotes the area of 4XY Z.
• The notation O(r) refers to the circle centered at point O with radius r.

The circle may sometimes also be referred to as circle O.

• If
_
XY is an arc of a circle, then m(

_
XY ) denotes the circular measure of

that arc. The arc extends counterclockwise along the circle from X to Y .
• Typically, we use r for the inradius of a triangle and w for the inradius of

a skewed sector.

2. Inradius Formula

Formulas for the radius of the circle inscribed in a skewed sector and in a triangle
are known. Since these are not well-known, we review them here.

Theorem 2.1 (Inradius of skewed sector). Let APB be a skewed sector and let C

be the circle associated with arc
_
AB. Suppose P lies inside C. Let R be the radius

of C, let w be the radius of the circle inscribed in the skewed sector, and let r be
the radius of the circle inscribed in 4APB. Extend BP to meet the circle C at C
and draw AC. Let ↵, �, �, �, and ✏ be the measures of five angles associated with
the skewed sector as shown in Figure 4. Then

w =
4R sin

�

2
sin

�

2
cos

�

2
sin

✏

2⇣
cos

↵

2

⌘2 ,

r =
4R sin

�

2
sin

�

2
sin

✏

2
cos

✏

2

cos
↵

2

.

Figure 4. angles associated with a skewed sector

Proof. See [4, pp. 96–97] or [11, p. 26]. ⇤

An immediate consequence of this theorem is the following result.
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Theorem 2.2. Let APB be a skewed sector and suppose P lies inside the asso-
ciated circle. Let w be the radius of the circle inscribed in the skewed sector, and
let r be the radius of the circle inscribed in 4APB. Let ↵ be the vertex angle of
the skewed sector, let ✓1 be the arc angle of the skewed sector, and let ✓2 be the
arc angle of the opposite skewed sector. See Figure 5. Then

w

r
=

cos(✓2/4)

cos(↵/2) cos(✓1/4)
.

Figure 5.

We can also express w/r without using ✓2 as follows.

Theorem 2.3. Using the same notation as in Theorem 2.2,
w

r
= 1 + tan(↵/2) tan(✓1/4).

Proof. See [11, pp. 26–27]. ⇤

3. Relationship Between Incircles of Skewed Sectors and
Incircles of Triangles

To prove a relationship between skewed sector inradii, Theorems 2.1, 2.2, or 2.3
could be used to find the length of each radius. This is a brute force technique
and better methods are available. One strategy for finding relationships between
the radii of circles inscribed in skewed sectors is to relate these circles to circles
inscribed in triangles, for which results are already known.

Here are some theorems that relate circles in skewed sectors to circles in triangles.

The following theorem appeared on a tablet in 1781. See [4, problem 4.0.3], [3,
problem 2.2.8], [5], and [9].

Theorem 3.1 (Ajima’s Theorem). Let AB be a chord of a circle and let C be a
point inside the circle, not on the chord. See Figure 6. Let W (w) be the incircle
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of skewed sector ACB (the red circle) and let O(r) be the incircle of 4ACB (the
yellow circle). Then

w = r +
2d(s� a)(s� b)

cs
,

where d is the height of the segment formed by AB, a = BC, b = AC, c = AB,
and s is the semiperimeter of 4ABC.

Figure 6. w = r + 2d(s� a)(s� b)/(cs)

Proof. See [4, pp. 96-97]. A more detailed proof can be found in [10, pp. 40-49]. ⇤

Theorem 3.2. Let D be any point on side BC of 4ABC. Cevian AD extended
meets the circumcircle of 4ABC at D0. Let W1(w1) be the incircle of skewed
sector BDD0 and let W2(w2) be the incircle of skewed sector CDD0. Let O1(r1) be
the incircle of 4ADB and let O2(r2) be the incircle of 4ADC (Figure 7). Then

1

r1
+

1

w2
=

1

r2
+

1

w1
.

Figure 7. 1/r1 + 1/w2 = 1/r2 + 1/w1
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Figure 8. angle names

Proof. We give names to the various angles as shown in Figure 8.

Note that \CDA = ↵2 is supplementary to \BDA = ↵, so cos(↵2/2) = sin(↵/2).
Four applications of Theorem 2.1 gives

w1 =
4R sin(�/2) cos(�/2) sin(�/2) sin(✏/2)

sin2(↵/2)
,

w2 =
4R sin(�/2) sin(�/2) sin(�/2) cos(✏/2)

cos2(↵/2)
,

r1 =
4R sin(�/2) sin(�/2) sin(✏/2) cos(✏/2)

cos(↵/2)
,

r2 =
4R sin(�/2) sin(✏/2) sin(�/2) cos(�/2)

cos(↵/2)
.

Now form the expression

S =
1

w1
+

1

r2
�

✓
1

w2
+

1

r1

◆
.

Then substitute ↵ = � + ✏ and then ✏ = ⇡ � � � � � �. Simplifying the resulting
expression (using a computer algebra system), shows that S = 0. ⇤

The result of Theorem 3.2 is so elegant that it is unlikely that it is true only
because the complicated trigonometric expression, S, in the proof just happens
to simplify to 0.

Open Question. Is there a simple proof of Theorem 3.2 that does not involve a
large amount of trigonometric computation requiring computer simplification?

The following theorem appeared on a tablet in 1844 in the Aichi prefecture. See
[3, problem 1.4.7] and [2, p. 22].
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Theorem 3.3. Chords AB and CD of a circle meet at E. Let W1(w1) be the
incircle of skewed sector BED and let W2(w2) be the incircle of skewed sector
AEC. Let O1(r1) be the incircle of 4BED and let O2(r2) be the incircle of
4AEC. See Figure 9. Then

1

r1
+

1

w2
=

1

r2
+

1

w1
.

Figure 9. 1/r1 + 1/w2 = 1/r2 + 1/w1

Proof. This proof comes from [11, pp. 26–27]. Let ↵ be the vertex angle of skewed
sector BED. Let ✓1 be its arc angle an let ✓2 be the arc angle of the opposite
skewed sector AEC. By Theorem 2.3, we have

w1

r1
= 1 + tan(↵/2) tan(✓1/4)

which is equivalent to
w1

r1
� 1 = tan(↵/2) tan(✓1/4)

or
1

r1
� 1

w1
=

tan(↵/2) tan(✓1/4)

w1
.

Similarly,
1

r2
� 1

w2
=

tan(↵/2) tan(✓2/4)

w2
.

But
tan(✓1/4)

w1
=

tan(✓2/4)

w2

by Theorem 4.2 (which will be proved in the next section). Thus,

1

r1
� 1

w1
=

1

r2
� 1

w2

and the result follows. ⇤
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Theorem 3.4. Chords AB and CD of a circle meet at E, with \AEC = ↵. Let
W1(w1) be the incircle of skewed sector BED and let W2(w2) be the incircle of
skewed sector AEC. Let O1(r1) be the incircle of 4BED and let O2(r2) be the
incircle of 4AEC. See Figure 9. Then

r1r2 = w1w2 cos2 ↵

2
.

Proof. Let m(
_
DB) = ✓1 and m(

_
CA) = ✓2. Applying Theorem 2.2 to skewed

sector BED gives
w1

r1
=

cos(✓2/4)

cos(↵/2) cos(✓1/4)
.

Applying Theorem 2.2 to skewed sector AEC gives

w2

r2
=

cos(✓1/4)

cos(↵/2) cos(✓2/4)
.

Multiplying these two equations gives

w1w2

r1r2
=

1

cos2(↵/2)

and the result follows by cross-multiplying. ⇤

Theorem 3.5. Cevians AD and CF in 4ABC meet at P and \BFC = \BDA.
The cevians are extended to meet the circumcircle of 4ABC at points D0 and F 0,
respectively, as shown in Figure 10. Let W1(w1) be the incircle of skewed sector
BDD0 and let W2(w2) be the incircle of skewed sector BFF 0. Let O1(r1) be the
incircle of 4BDD0 and let O2(r2) be the incircle of 4BFF 0. Then

w1

r1
=

w2

r2
.

Figure 10. w1/r1 = w2/r2
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Proof. Let m(
_

BD0) = ✓1, m(
_
F 0B) = ✓2, and m(

_
CA) = �. Applying Theorem 2.2

to skewed sector BDD0 using ↵1 = \BDD0 gives

w1

r1
=

cos(�/4)

cos(↵1/2) cos(✓1/4)
.

Applying Theorem 2.2 to skewed sector BFF 0 using ↵2 = \BFF 0 gives

w2

r2
=

cos(�/4)

cos(↵2/2) cos(✓2/4)
.

But ↵1 = ↵2 because they are supplementary to the two given angles. Chords
AD0 and BC intercept arcs of measures ✓1 and �, so ↵1 = (✓1 + �)/2. Similarly,
↵2 = (✓2 + �)/2. Thus, ✓1 = ✓2 because ↵1 = ↵2. Therefore, w1/r1 = w2/r2. ⇤

Theorem 3.6. Let H be the orthocenter of acute triangle ABC. The altitudes
AD and CF are extended to meet the circumcircle of 4ABC at points D0 and F 0,
respectively. Let W1(w1) be the incircle of skewed sector BDD0 and let W2(w2) be
the incircle of skewed sector BFF 0. Let O1(r1) be the incircle of 4BDH and let
O2(r2) be the incircle of 4BFH. See Figure 11. Then

w1

r1
=

w2

r2
.

Figure 11. w1/r1 = w2/r2

Proof. Let r0
1 be the inradius of 4BDD0 and let r0

2 be the inradius of 4BFF 0.
Since \BFC = \BDA, by Theorem 3.5, we have w1/r0

1 = w2/r0
2. Now \CBD0 =

\CAD0 since both angles subtend the same arc. But \CAD0 = \CBE0 since both
angles are complementary to \ACB. Thus, \DBD0 = \DBH. Right triangles
BDD0 and BDH share a common side. Thus4BDD0 ⇠= 4BDH. Hence r1 = r0

1.
Similarly, r2 = r0

2. Therefore, w1/r1 = w2/r2. ⇤

Lemma 3.7. Let H be the orthocenter of acute 4ABC, and let the altitudes be
AD, BE, and CF as shown in Figure 12. Circles O1(r1), O2(r2), O3(r3), and
O4(r4) are inscribed in triangles BHD, BHF , CAF , and ACD, respectively.
Then r1/r2 = r4/r3.
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Figure 12. r1/r2 = r4/r3

Proof. Note that 4BHF ⇠ 4CAF . Therefore the figure consisting of 4BHF
and its incircle is similar to the figure consisting of 4CAF and its incircle. Cor-
responding parts of similar figures are in proportion, so r2/r3 = BH/CA. In the
same manner, 4BHD ⇠ 4ACD which implies that r1/r4 = BH/AC. Therefore,
r2/r3 = r1/r4 or r1/r2 = r4/r3. ⇤

Corollary 3.8. Let H be the orthocenter of acute 4ABC. The altitudes AD
and CF are extended to meet the circumcircle of 4ABC at points D0 and F 0,
respectively. Let W1(w1) be the incircle of skewed sector BDD0 and let W2(w2) be
the incircle of skewed sector BFF 0. Let O3(r3) be the incircle of 4AFC and let
O4(r4) be the incircle of 4ADC. See Figure 13. Then w1/w2 = r4/r3.

Figure 13. w1/w2 = r4/r3

Proof. By Theorem 3.6, w1/w2 = r1/r2. By Lemma 3.7, r1/r2 = r4/r3. Therefore,
w1/w2 = r4/r3. ⇤
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4. Relationships Between the Incircles of Two Skewed Sectors

Theorem 4.1. Chords AB and CD of a circle meet at E. Let W1(w1) be the circle
inscribed in skewed sector DEB and let W2(w2) be circle inscribed in skewed sector
AEC, as shown in Figure 14. Then

w1

w2
=

tan(✓1/2)

tan(✓2/2)

where \BCD = ✓1 and \ADC = ✓2.

Figure 14. w1/w2 = tan(✓1/2)/ tan(✓2/2)

Proof. See [4, pp. 96–97] or [11, p. 26–27]. ⇤

Since the measure of an angle inscribed in a circle is half the circular measure of
the intercepted arc, we have the following result.

Theorem 4.2. Chords AB and CD of a circle meet at E. Let W1(w1) be the
circle inscribed in skewed sector DEB and let W2(w2) be the circle inscribed in
skewed sector AEC, as shown in Figure 15. Then

w1

w2
=

tan(✓1/4)

tan(✓2/4)

where m(
_
CA) = ✓1 and m(

_
DB) = ✓2.

Figure 15. w1/w2 = tan(✓1/4)/ tan(✓2/4)
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The reader may wonder if there is any geometric significance to the angle ✓1/4. If

M is the midpoint of arc
_
DB, then \BDM = 1

2

_
MB and

_
MB= 1

2

_
DB= 1

2✓1, so
\BDM = ✓1/4.

There is a related result involving the incircles of triangles.

Theorem 4.3. Chords B1B2 and C1C2 of a circle meet at A. Let r1 and r2 be
the inradii of 4B1AC1 and 4B2AC2, respectively, as shown in Figure 16. Let
B1C1 = a1 and let B2C2 = a2. Then = r1/r2 = a1/a2.

Figure 16. r1/r2 = a1/a2

Proof. This follows from the fact that 4B1AC1 ⇠ 4B2AC2. ⇤

The following theorem comes from [11, Problem 21] and is related to Ajima’s
Theorem.

Theorem 4.4. Chords B1B2 and C1C2 of a circle meet at A. Let W1(w1) be the
circle inscribed in skewed sector B1AC1 and let W2(w2) be the circle inscribed in
skewed sector B2AC2. Let v1 and v2 be the heights of the segments formed by
chords B1C1 and B2C2 as shown in Figure 17. Then

w1

w2
=

v1a2

v2a1

where a1 = B1C1 and a2 = B2C2.

Figure 17. w1/w2 = v1a2/v2a1

The following result is due to Pohoatza and Ehrmann, [6].
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Theorem 4.5. Let D be the point on side BC of 4ABC such that AB + BD =
AC + CD. A circle is circumscribed about 4ABC. Let W1(w1) be the circle
inscribed in skewed sector ADB and let W2(w2) be the circle inscribed in skewed
sector ADC (Figure 18). Then w1 = w2.

Figure 18. w1 = w2

Proof. Extend AD to meet the circumcircle of 4ABC at D0. Let O1(r1) be
the circle inscribed in 4BDD0 and let O2(r2) be the circle inscribed in 4CDD0

(Figure 19). Then 1/r1 +1/w2 = 1/r2 +1/w1 by Theorem 3.2 (with points A and
D0 interchanged). But r1 = r2 by Theorem 3.4 of [8]. Therefore, w1 = w2. ⇤

See [1] for another proof.

Figure 19. r1 = r2 and w1 = w2

5. Relationships Between the Incircles of Six Skewed Sectors

Theorem 5.1. Let H be the orthocenter of acute4ABC. The altitudes through H
extended to meet the circumcircle of4ABC divide the interior of that circumcircle
into six skewed sectors, each with vertex at H, as shown in Figure 20. Let Wi(wi)
be the circle tangent to two altitudes and internally tangent to the circumcircle as
shown. Then w1w3w5 = w2w4w6.
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Figure 20. w1w3w5 = w2w4w6

Proof. Let ✓i be the arc angle of the skewed sector containing circle Wi. By The-
orem 4.2, w1/w4 = tan(✓1/4)/ tan(✓4/4). Similarly, w2/w5 = tan(✓2/4)/ tan(✓5/4)
and w3/w6 = tan(✓3/4)/ tan(✓6/4). Consequently,

w1w3w5

w2w4w6
=

w1

w4
· w3

w6
· w5

w2
=

tan(✓1/4)

tan(✓4/4)
· tan(✓3/4)

tan(✓6/4)
· tan(✓5/4)

tan(✓2/4)
.

Note that \BAH = \BCH since both are complementary to \ABC. Therefore,
✓1 = ✓6. Similarly, ✓2 = ✓3 and ✓4 = ✓5. Hence

w1w3w5

w2w4w6
=

tan(✓1/4)

tan(✓5/4)
· tan(✓3/4)

tan(✓1/4)
· tan(✓5/4)

tan(✓3/4)
= 1,

so w1w3w5 = w2w4w6. ⇤

Theorem 5.2. Let I be the incenter of 4ABC. The cevians through I extended
to meet the circumcircle of 4ABC divide the interior of that circumcircle into six
skewed sectors, each with vertex at I, as shown in Figure 21. Let Wi(wi) be the
circle tangent to two cevians and internally tangent to the circumcircle as shown.
Then w1w3w5 = w2w4w6.

Figure 21. w1w3w5 = w2w4w6
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Proof. Let ✓i be the arc angle of the skewed sector containing circle Wi(wi). By
Theorem 4.2, w1/w4 = tan(✓1/4)/ tan(✓4/4). Similarly, w2/w5 = tan(✓2/4)/ tan(✓5/4)
and w3/w6 = tan(✓3/4)/ tan(✓6/4). Consequently,

w1w3w5

w2w4w6
=

w1

w4
· w3

w6
· w5

w2
=

tan(✓1/4)

tan(✓4/4)
· tan(✓3/4)

tan(✓6/4)
· tan(✓5/4)

tan(✓2/4)
.

Note that \BAI = \CAI since AI is an angle bisector. Therefore, ✓1 = ✓2.
Similarly, ✓3 = ✓4 and ✓5 = ✓6. Hence

w1w3w5

w2w4w6
=

tan(✓1/4)

tan(✓3/4)
· tan(✓3/4)

tan(✓5/4)
· tan(✓5/4)

tan(✓1/4)
= 1,

so w1w3w5 = w2w4w6. ⇤

Theorem 5.3. Let H be the orthocenter of acute4ABC. The altitudes through H
extended to meet the circumcircle of4ABC divide the segments of the circumcircle
bounded by the sides of the triangle into two skewed sectors each as shown in
Figure 22. Let Wi(wi) be the incircles of the six skewed sectors formed, situated
as shown in Figure 22. Then w1w3w5 = w2w4w6.

Figure 22. w1w3w5 = w2w4w6

Proof. The altitudes of 4ABC divide it into six triangles named T1 through T6

as shown in Figure 22. Let ri be the inradius of triangle Ti. By Theorem 3.6,
w1/r1 = w6/r6. Similarly, w3/r3 = w2/r2 and w5/r5 = w4/r4. Therefore,

w1w3w5

r1r3r5
=

w6w2w4

r6r2r4
.

But r1r3r5 = r2r4r6 by Theorem 3.1 of [7]. Therefore, w1w3w5 = w2w4w6. ⇤

Theorem 5.4. Let M be the centroid of 4ABC. The medians through M ex-
tended to meet the circumcircle of 4ABC divide the segments of the circumcircle
bounded by the sides of the triangle into two skewed sectors each as shown in Fig-
ure 23. Let Wi(wi) be the incircles of the six skewed sectors formed, situated as
shown in Figure 23. Then

1

w1
+

1

w3
+

1

w5
=

1

w2
+

1

w4
+

1

w6
.
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Figure 23. 1/w1 + 1/w3 + 1/w5 = 1/w2 + 1/w4 + 1/w6

Proof. A cevian through a point P inside a triangle ABC divides 4ABC into
two triangles, known as side triangles. There are six such side triangles, named
S1 through S6 as shown in Figure 24.

Figure 24. naming of side triangles

Let ri be the radius of the circle inscribed in triangle Si. When P is the centroid
of 4ABC, Theorem 2.2 from [8] states that

1

r1
+

1

r3
+

1

r5
=

1

r2
+

1

r4
+

1

r6
.

By Theorem 3.2,
✓

1

w1
� 1

w2

◆
+

✓
1

w3
� 1

w4

◆
+

✓
1

w5
� 1

w6

◆

=

✓
1

r1
� 1

r2

◆
+

✓
1

r3
� 1

r4

◆
+

✓
1

r5
� 1

r6

◆
= 0,

so 1/w1 + 1/w3 + 1/w5 = 1/w2 + 1/w4 + 1/w6. ⇤

Theorem 5.5. Let H be the orthocenter of acute 4ABC. The altitudes through
H divide the triangle into six side triangles, S1 through S6 as shown in Figure 24.
Let Wi(wi) be the incircle of the skewed sector associated with Si. Two of these
circles are shown in Figure 25. Then w1w3w5 = w2w4w6.

Proof. This follows from Theorem 5.3 by applying Corollary 3.8. ⇤

Theorem 5.6. Let O be the circumcenter of 4ABC. The cevians through O
extended to meet the circumcircle of4ABC divide the interior of that circumcircle
into six skewed sectors, each having vertex at O, as shown in Figure 26. Let Wi(wi)
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Figure 25. w1w3w5 = w2w4w6

be the circle tangent to two cevians and internally tangent to the circumcircle as
shown. Then

w1 = w4, w2 = w5, w3 = w6.

Figure 26. w1 = w4, w2 = w5, w3 = w6

Proof. It su�ces to show that w1 = w4. Note that \BOD0 = \AOE0 because
they are vertical angles. Also, OB = OD0 = OE0 = OA because they are all radii
of circle O. Therefore, skewed sectors BOD0 and AOE0 are congruent and thus
their incircles are also congruent. ⇤

Theorem 5.7. Let O be the circumcenter of 4ABC. The cevians through O are
extended to meet the circumcircle of 4ABC at points D0, E0, and F 0 as shown
in Figure 27. The cevians divide 4ABC into six side triangles named S1 through
S6 as shown in Figure 24. Six circles, Wi(wi), are inscribed in the skewed sectors
associated with these side triangles. Two of these circles are shown in Figure 27.
Then

w1 = w4, w2 = w5, w3 = w6.
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Figure 27. w1 = w4

Proof. It su�ces to show that w1 = w4. Note that OA = OB because they are
both radii of circle O. Thus, \OAB = \OBA because they are the base angles of
an isosceles triangle. Also, AD0 = BE0 because they are both diameters of circle
O. The skewed sectors BAD0 and ABE0 have side AB in common. Therefore,
skewed sectors BAD0 and ABE0 are congruent and hence their incircles are also
congruent. ⇤
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